If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-80=-16t^2+64t
We move all terms to the left:
-80-(-16t^2+64t)=0
We get rid of parentheses
16t^2-64t-80=0
a = 16; b = -64; c = -80;
Δ = b2-4ac
Δ = -642-4·16·(-80)
Δ = 9216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9216}=96$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-64)-96}{2*16}=\frac{-32}{32} =-1 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-64)+96}{2*16}=\frac{160}{32} =5 $
| 6/9=x/18 | | 8x-40=64 | | q+83=903 | | 8(4x+4)=32+8x | | -3(x-1)=4x-11 | | 2(x-3)=3x+34 | | 1=7−2b | | −2(−3b+4.8)=14.4 | | 3/7(-28a+21)=129 | | -7v+26=2(v-5) | | -90+13x-6x=36 | | -9+13x-6x=36 | | 6(v+2)=3v-9 | | 5b+4=3b+-4 | | 47=3–6y | | -6v+12=3(v+1) | | 16k=-32 | | -15x-82+10x=88 | | 4(t+7)=32 | | 21x-63=24x-8 | | 8q^2-5=7q^2-9q+12 | | a/6-12=15 | | 18=8-y | | 3x+4x-3=15+4x | | 10(2b+3)=70 | | b/6+4=8 | | 6/x-1=x/2,x≠1 | | 12x-4=8x+14 | | 24-8b=-5(6b+4) | | 3x-14=x=20 | | 8=f−-1 | | 3x-23+152-4x=180 |